首页 > 家长课堂 > 聚焦小升初 > 让那些烧脑题不烧脑 四年级奥数知识点高斯求和

让那些烧脑题不烧脑 四年级奥数知识点高斯求和

数学加 2016-08-09 16: 02      浏览次数:
分享到:

    奥数奥数,四年级奥数。有同学问数学加编辑为什么又是四年级,因为数学加编辑的水平也就只能勉强四年级了。别笑了,来看四年级奥数精讲:高斯求和!

数学加

    例1 :1+2+3+…+1999=?

    分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得

    原式=(1+1999)×1999÷2=1999000。

    注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

    例2 :11+12+13+…+31=?

    分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

    原式=(11+31)×21÷2=441。

    在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到

    项数=(末项-首项)÷公差+1,

    末项=首项+公差×(项数-1)。

    例3 :3+7+11+…+99=?

    分析与解:3,7,11,…,99是公差为4的等差数列,

    项数=(99-3)÷4+1=25,

    原式=(3+99)×25÷2=1275。

    例4 :求首项是25,公差是3的等

    差数列的前40项的和。

    分析与解:末项=25+3×(40-1)=142,

    和=(25+142)×40÷2=3340。

    利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

相关阅读

已有4个评价
评价 (还可以输入120字)

最新资讯

小升初考试中孩子总错...

真心觉得人民日报的内容挺好的,高频错误罗列的很权威和工整。数学加编辑喜欢引用的原因是它的内容的准确度,真的是大数据的总结...

李娜
(数学主讲名师)
初中教研主任,多家知名网校中学数学主讲名师,教龄十余年,快乐教学,快速提分
王垚
(良师益友)
谦谦君子,温润如玉;如切如磋,如琢如磨
廖延梅
(骨干名师)
重点中学十余年,学科带头人,深入研究初中数学教学方法。